Preparation of different types of solutions

Experiment (7)

An analysis of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH using two indicators and a standard $\mathbf{H C l}$ solution

Theory:

1- When a known volume of the mixture is titrated with HCl in presence of $\mathrm{ph} . \mathrm{ph}$., the acid reacts with all the sodium hydroxide and with only half of the carbonate.

$$
\mathrm{V} 1=\text { all hydroxide }+1 / 2 \text { the carbonate }
$$

2- When a known volume of the mixture is titrated with HCl in presence of M.O., the acid reacts with all the hydroxide and all the carbonate.

$$
\begin{aligned}
& \mathrm{V} 2=\text { all hydroxide }+ \text { all carbonate } \\
& \text { Volume of } \mathrm{HCl}=1 / 2 \text { carbonate }=\mathrm{V} 2-\mathrm{V} 1=\mathrm{V} \mathrm{ml} \\
& \text { Volume of } \mathrm{HCl}=\text { all carbonate }=2 \mathrm{~V} \mathrm{ml} \\
& \text { Volume of } \mathrm{HCl}=\mathrm{NaOH}=\mathrm{V} 2-2 \mathrm{~V} \mathrm{ml}
\end{aligned}
$$

General interaction

Materials and method:

1- Fill the burette with $0.1 \mathrm{~N}(\mathrm{HCl})$ solution.

2- Transfer with a pipette 10 ml of the mixture $\left(\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ to a conical flask, and add one or two drops of ph. ph.

3- Add the acid from the burette till the solution becomes colorless.

4- Repeat the experiment twice or three times and tabulate your results.

- The volume of acid in the case is V_{X} and is equivalent to all the hydroxide and half the carbonate $\left(\mathrm{NaOH}+1 / 2 \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$.

5- Repeat the experiment with methyl orange (M.O) until the color of the solution is changed to faint red.

6- Repeat the experiment twice or three times and tabulate your results.

- The volume of acid in the case is V_{y} and is equivalent to all the hydroxide and all the carbonate $\left(\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, which represents the volume of the acid, which is equivalent to $\left(1 / 2 \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$.

7- Calculate the strength of the sodium hydroxide and the sodium carbonate in the mixture.

Calculations:

- In the case of $\mathrm{Na}_{2} \mathrm{CO}_{3}$:
- Calculate the concentration of $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$.
- Calculate the volume of acid (HCl) that is equivalent to $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
$\mathrm{V}_{1}=2 \mathrm{Vy}$
$\mathrm{N}_{\mathrm{HCl}} \times \mathrm{V}_{\mathrm{HCl}}=\mathrm{N}_{\mathrm{Na} 2 \mathrm{CO}_{3}} \times \mathrm{V}_{\mathrm{Na} 2 \mathrm{CO}}$
- In the case of $\mathbf{N a O H}$:
- Calculate the volume of acid equivalent (NaOH).
$\mathrm{V}_{2}=\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{y}}$
$\mathrm{V}_{2}=\mathrm{V}_{\mathrm{X}}\left(1 / 2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaOH}\right)-\mathrm{V}_{\mathrm{y}}\left(1 / 2 \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
$\mathrm{N}_{\mathrm{HCI}} \times \mathrm{V}_{\mathrm{HCl}}=\mathrm{N}_{\mathrm{NaOH}} \times \mathrm{V}_{\mathrm{NaOH}}$

Experiment (8)

Precipitation titration

Determination of chloride ion by Mohr method

Precipitation titration: is titration depend upon the combination of ions to form a simple precipitate. Mohr method is a method depend upon formation a colored precipitate for the determination of chloride ion.

Chloride ion, is reacted with silver nitrate solution to form AgCl precipitate.

$$
\mathrm{AgNO}_{3}+\mathrm{NaCl} \longleftrightarrow \square \mathrm{AgCl}+\mathrm{NaNO}_{3} \quad \mathrm{Ksp} \mathrm{AgCl}=1.2 \times 10^{-10}
$$

A small quantity of potassium chromate $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$ solution is added to serve as indicator. The first excess of titrant results in the formation of a red silver chromate precipitate which signal the end point.

$$
2 \mathrm{AgNO}_{3}+\mathrm{K}_{2} \mathrm{CrO}_{4} \square \longleftrightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}+2 \mathrm{KNO} \quad \mathrm{Ksp} \mathrm{Ag}_{2} \mathrm{CrO}_{4}=1.7 \times 10^{-12}
$$

Procedure:

1-Clean the burette and fill it with silver nitrate (0.1 N).
2-Pipet 10 mL of chloride ion solution into 250 mL conical flask, add 5drops of potassium chromate.

3-Titrate chloride solution against silver nitrate until arrive to equivalent point(the point in which the number of moles of AgNO_{3} equal to the number of moles of chloride ion)[Notice a white precipitate in the yellow solution].

After this point the excess of AgNO_{3} will react with potassium chromate leading to formation of red precipitate $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ (the end point). The difference between equivalent and end point is the volume of AgNO 3 reacted with the indicator.

4- Repeat the titration and calculate the average and subtract the indicator blank (equal to 0.1 mL). Calculate the normality.
$\mathrm{N}_{\mathrm{Cl}}{ }^{-} \times \mathrm{V}_{\mathrm{Cl}^{-}}=\mathrm{N}_{\mathrm{Ag}+} \times \mathrm{V}_{\mathrm{Ag}+}$
Concentration of [Cl-] $(\mathrm{ppm})=\mathrm{N}_{\mathrm{Cl}}{ }^{-} \times$eq.wt $\times 1000$

